Выбор цвета дизайна
Выбор цвета кнопок
Положение колонки
Вид постеров

Книга: Уравнение Бога. В поисках теории всего | страница 8

Но что мы имеем в виду, когда говорим, что некое уравнение симметрично?

Объект симметричен, если после перестановки частей он останется прежним, или инвариантным. Например, сфера симметрична, поскольку не меняется при вращении. Но как можно выразить это математически?

Представьте, как Земля обращается вокруг Солнца (см. рис. 2). Обозначим радиус орбиты Земли R; эта величина не меняется при движении Земли по орбите (на самом деле орбита Земли имеет эллиптическую форму, так что R слегка меняется, но в данном примере это неважно). Координаты Земли на орбите обозначаются как X и Y. При движении Земли X и Y непрерывно меняются, но R остается инвариантным, то есть постоянным.



Рис. 2.


Уравнения Ньютона[6] сохраняют эту симметрию, то есть при движении Земли по орбите притяжение, существующее между Землей и Солнцем, остается неизменным. При смене системы отсчета законы остаются прежними. С какой бы стороны и под каким бы углом мы ни рассматривали задачу, правила будут неизменными и мы получим одни и те же результаты.

Когда мы перейдем к обсуждению единой теории поля, концепция симметрии будет встречаться нам постоянно. Мы увидим, что симметрия – один из мощнейших инструментов объединения всех взаимодействий в природе.

Подтверждение законов Ньютона

За прошедшие столетия было найдено немало подтверждений законов Ньютона, и они оказали громадное влияние как на науку, так и на общество. В XIX веке астрономы заметили в небесах странную аномалию. Положение планеты Уран заметно отклонялось от предсказаний, сделанных на основании законов Ньютона. Ее орбита была не идеальным эллипсом, а слегка искажалась. Получалось, что либо законы Ньютона здесь не работают, либо существует еще одна планета, пока не открытая учеными, которая своим притяжением видоизменяет орбиту Урана. Вера в законы Ньютона была столь велика, что физики, в том числе и Урбен Леверье, занялись вычислением предполагаемого положения загадочной планеты. В 1846 г. астрономы с первой попытки обнаружили ее в предсказанной точке с отклонением в пределах одного градуса и окрестили Нептуном. Это стало наглядным примером работы законов Ньютона и первым случаем в истории, когда чистая математика позволила предсказать существование крупного небесного тела.

Как уже говорилось, всякий раз, когда ученым удавалось расшифровать принципы действия одной из четырех главных сил Вселенной, это приводило не только к разгадыванию тайн природы, но и к революционным сдвигам в обществе. Законы Ньютона дали ключ к пониманию загадок планет и комет, а также заложили основу механики, которая позволяет нам сегодня создавать небоскребы, двигатели, реактивные самолеты, поезда, мосты, подводные лодки и ракеты. Так, в XIX веке физики применили законы Ньютона к объяснению природы теплоты. В то время ученые полагали, что теплота представляет собой некую форму жидкости, которая растекается по веществу. Но исследования показали, что на самом деле теплота – это движение молекул, напоминающих постоянно соударяющиеся крохотные стальные шарики. Законы Ньютона позволили точно рассчитать, как именно два таких стальных шарика отскакивают друг от друга. Затем, просуммировав триллионы и триллионы молекул, можно вычислить точные параметры теплоты. (Например, когда газ в камере нагревается, он расширяется в соответствии с законами Ньютона, поскольку тепло увеличивает скорость молекул.)

Правообладателям (DMCA)